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In Brief
Impaired insulin secretion, increased hepatic glucose production, and 
decreased peripheral glucose utilization are the core defects responsible for 
the development and progression of type 2 diabetes. However, the patho-
physiology of this disease also includes adipocyte insulin resistance (increased 
lipolysis), reduced incretin secretion/sensitivity, increased glucagon secre-
tion, enhanced renal glucose reabsorption, and brain insulin resistance/
neurotransmitter dysfunction. Although current diabetes management focuses 
on lowering blood glucose, the goal of therapy should be to delay disease 
progression and eventual treatment failure. Recent innovative treatment 
approaches target the multiple pathophysiological defects present in type 2 
diabetes. Optimal management should include early initiation of combination 
therapy using multiple drugs with different mechanisms of action. This review 
examines novel therapeutic options that hold particular promise.
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Novel Agents for the Treatment of Type 2 Diabetes

From 1987 to the present, our under-
standing of the pathophysiology of 
type 2 diabetes has expanded from 
the triumvirate of β-cell–, muscle-, and 
liver-related defects1 to the “ominous 
octet” described in the 2008 Banting 
Lecture2 (Figure 1). We have learned 
that β-cell failure occurs much earlier 
in the natural history of type 2 diabetes 

than previously appreciated, and there 
is growing evidence that therapeutic 
interventions that slow or delay the pro-
gression of β-cell failure can lead to more 
durable glycemic control. Currently 
available antidiabetic agents target mul-
tiple pathophysiological mechanisms 
present in type 2 diabetes (Figure 2), 
but glycemic control in patients with 
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type 2 diabetes remains poor, with 
~ 50% of such individuals in the 
United States having an A1C > 7.0%. 
In this article, we review novel ther-
apeutic approaches based on the 
pathophysiology of type 2 diabetes. 
To appreciate what future therapies 
may represent potential targets for the 
disease, we briefly review the patho-
genesis of type 2 diabetes. 

β-Cell Function 
The fundamental core defects respon-
sible for type 2 diabetes are impaired 
insulin secretion resulting from declin-
ing β-cell function, decreased glucose 
uptake by peripheral (muscle) tissues, 

and increased hepatic glucose produc-
tion (HGP) secondary to augmented 
gluconeogenesis.1,2 Insulin secretion 
is increased early in the course of the 
disease, as the pancreas attempts to 
compensate for the elevated fasting 
plasma glucose (FPG) concentration 
and underlying insulin resistance. 
However, as the FPG concentration 
continues to rise, β-cells are no lon-
ger able to sustain their increased rate 
of insulin secretion, and as insulin 
secretion begins to decline, impaired 
glucose tolerance (IGT) and eventu-
ally overt diabetes ensue.3–6 Increased 
HGP and decreased muscle glu-
cose uptake further contribute to 

the state of hyperglycemia,7,8 which 
places further stress on the β-cells 
and establishes a negative feed-
back loop through which metabolic 
decompensation—glucotoxicity9 and 
lipotoxicity10—contributes to β-cell 
failure and worsening insulin resistance.

Importantly, the plasma insulin 
response to glucose does not provide 
information about the health of the 
β-cell. The β-cell responds to an incre-
ment in plasma glucose concentration 
with an increment in plasma insulin, 
and this feedback loop is influenced by 
the severity of insulin resistance. Thus, 
β-cell function is best characterized by 
the insulin secretion/insulin resistance 
(disposition) index (ΔINS/ΔGLU ÷ IR, in 
which I = insulin and G = glucose).4,11,12 
Studies from our group3–5 have estab-
lished that β-cell failure occurs early 
in the natural course of type 2 diabe-
tes and is more severe than originally 
appreciated (Figure 3). As the 2-hour 
plasma glucose concentration in nor-
mal glucose tolerant (NGT) subjects 
increases from < 100 to 100–119 to 
120–139 mg/dl, there is an ~ 60% 
decline in β-cell function. In the upper 
tertile of IGT (2-hour plasma glucose 
during an oral glucose tolerance test 
[OGTT] = 180–199 mg/dl), β-cell func-
tion has declined by 75–80%.4,5,11,12 
More worrisome than the loss of 
β-cell function is the progressive loss 
of β-cell mass that starts during the 
prediabetic stage and continues pro-
gressively with worsening diabetes. 
Thus, treatment strategies for patients 
with type 2 diabetes should include 
agents that delay or prevent β-cell 
apoptosis.13

By the time individuals reach the 
upper tertile of IGT, most are maxi-
mally or near-maximally insulin 
resistant and have lost the majority 
(75–80%) of their β-cell function. 
Therefore, treatment strategies for 
patients with type 2 diabetes should 
include agents that preserve β-cell 
function and ideally have the potential 
to prevent or delay β-cell apoptosis. 

Insulin Resistance and Type 
2 Diabetes
Insulin resistance is a key pathophysio-
logical abnormality in type 2 diabetes 
and occurs early in the natural history 
of the disease.1,2,4,8,11,14 Both the liver 
and muscle are severely resistant to 
insulin action. A strong correlation 
exists between the increase in HGP 
and the increase in FPG concentration 
in type 2 diabetes.1,2 The increased 

Figure 1. The ominous octet. Multiple defects contribute to the development 
of glucose intolerance in type 2 diabetes. HGP, hepatic glucose production.

Figure 2. Pathophysiological abnormalities targeted by currently available 
antidiabetic medications. DPP4i, dipeptidyl peptidase-4 inhibitor; GLP1 
RA, glucagon-like peptide-1 receptor agonist; HGP, hepatic glucose 
production; MET, metformin; SGLT2i, sodium glucose co-transporter 2 
inhibitor; TZD, thiazolidinedione.
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rate of HGP occurs in the presence of 
fasting plasma insulin concentrations 
that are elevated two- to threefold, 
indicating severe resistance to the 
suppressive effect of insulin on HGP. 
When insulin is infused to mimic lev-
els seen after ingestion of a standard 
meal, HGP suppression is markedly 
impaired.15 All of the increase in HGP 
is secondary to an accelerated rate of 
hepatic gluconeogenesis.16

Studies using the gold-standard 
euglycemic insulin clamp technique17 
have shown that skeletal muscle 
is severely resistant to insulin and 
accounts for 85–90% of the impair-
ment in total body glucose disposal 
in people with type 2 diabetes.2,8,14,18 
Multiple intracellular defects in 
insulin action, including decreased 
glucose transport and phosphoryla-
tion, reduced glycogen synthesis, 
and impaired glycolysis and glucose 
oxidation, contribute to the insu-
lin resistance.2,19 Most importantly, 
studies from our laboratory have dem-
onstrated that more proximal defects 
in the insulin receptor signal transduc-
tion cascade play a major role in the 
muscle insulin resistance observed in 
type 2 diabetes.2,11,14,20,21 However, it is 
important to note that, although insu-
lin resistance is well established in the 
liver and muscle in the early phase of 
the disease, overt hyperglycemia and 

diabetes do not develop without the 
onset of progressive β-cell failure.1,2,12

From the Triumvirate to the 
Ominous Octet
In addition to the triumvirate of β-cell 
failure and insulin resistance in muscle 
and liver, specific organ systems, includ-
ing the adipocyte (accelerated lipolysis), 
gastrointestinal (GI) tract (incretin defi-
ciency/incretin resistance), pancreatic 
α-cell (hyperglucagonemia), kidney 
(increased glucose reabsorption/thresh-
old), and brain/central nervous system 
(CNS) (insulin resistance), play key roles 
in the pathogenesis of type 2 diabetes. 
These multiple defects have been referred 
to as the “ominous octet” (Figure 1).2 

Disharmonious quartet
Deranged adipocyte metabolism and 
altered fat topography play an impor-
tant role in the pathogenesis of glucose 
intolerance in type 2 diabetes.2,10 Fat 
cells are resistant to the antilipolytic 
effect of insulin, leading to elevated 
plasma free fatty acid (FFA) concen-
trations15 and increased intracellular 
levels of toxic lipid metabolites (fatty 
acyl coenzyme A [FACoA], diacylglyc-
erol [DAG], and ceramide) that cause 
insulin resistance in muscle and liver22 
and promote β-cell failure.23 Fat cells 
are in a state of chronic inflamma-
tion and secrete excessive amounts of 
insulin resistance–inducing, inflam-

Figure 3. Insulin secretion/insulin resistance (disposition) index (ΔINS/
ΔGLU ÷ IR) in subjects with normal glucose tolerance (NGT), impaired 
glucose tolerance (IGT), and type 2 diabetes (T2DM) as a function of 
the 2-hour plasma glucose (PG) concentration during the OGTT (see 
text for a more detailed discussion). ΔINS/ΔGLU = increment in plasma 
insulin concentration/increment in plasma glucose concentration during 
oral glucose tolerance testing. The curves for lean and obese individuals 
are shown separately. IR = insulin resistance measured with the insulin 
clamp technique. 

matory, and atherosclerosis-provoking 
cytokines (tumor necrosis factor α , 
interleukin-6, resistin, and angioten-
sinogen) and fail to secrete normal 
amounts of insulin-sensitizing adipo-
cytokines (adiponectin).10

Quintessential quintet
People with type 2 diabetes also have 
a diminished incretin effect.2,24,25 The 
incretin hormones glucagon-like pep-
tide 1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide (GIP) 
account for 90% of the incretin effect 
and play a pivotal role in maintain-
ing normal glucose homeostasis. Both 
GLP-1 and GIP augment insulin secre-
tion, and GLP-1 also inhibits glucagon 
secretion, delays gastric emptying, 
and suppresses appetite.26 Although 
some studies have demonstrated a 
modest defect in GLP-1 secretion in 
type 2 diabetes, other studies have 
documented normal or even increased 
GLP-1 secretion.27 To the contrary, 
severe resistance to the stimulatory 
effect of GLP-1 on β-cell secretion of 
insulin has been a consistent finding.28

Setaceous sextet
Increased glucagon secretion by the 
α-cell and enhanced hepatic sensitiv-
ity to glucagon also play a key role in 
type 2 diabetes pathophysiology.29,30 
Glucagon is pivotal in maintaining the 
elevated basal rate of HGP in people 
with type 2 diabetes.29,30 Plasma glu-
cagon concentrations are increased in 
patients with IGT and type 2 diabetes 
compared to individuals with NGT29,30 
despite their hyperglycemia and hyper-
insulinemia, which should suppress 
glucagon secretion. Elevated concen-
trations of glucagon stimulate HGP 
and oppose the effect of insulin in sup-
pressing HGP. There also is enhanced 
sensitivity to the stimulatory effect of 
glucagon on HGP.30 In type 2 diabetes, 
when glucagon secretion is inhibited 
by somatostatin, fasting plasma gluca-
gon levels decline in association with 
a marked reduction in basal HGP.29

Septicidal septet
With a normal glomerular filtration 
rate of ~ 180 liters/day and a mean 
day-long plasma glucose concentration 
of 100 mg/dl, the kidney of healthy 
subjects filters ~ 180 g/day of glu-
cose.31 In healthy individuals, 90% of 
the filtered glucose is reabsorbed by 
the high-capacity, low-affinity sodium 
glucose co-transporter 2 (SGLT-2) in 
the proximal convoluted renal tubule, 
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and the remaining 10% is reabsorbed 
by the high-affinity, low-capacity 
SGLT-1 transporter in the straight 
segment of the descending proximal 
tubule.31,32 In nondiabetic subjects, no 
glucose appears in the urine until the 
plasma glucose concentration exceeds 
~ 180–200 mg/dl, at which level all of 
the excess filtered glucose is excreted. In 
people with poorly controlled diabetes, 
either type 1 or type 2, the threshold 
(~ 180–200 mg/dl) at which glucose 
appears in the urine, as well as the 
maximum renal tubular glucose reab-
sorptive capacity (TmG), is markedly 
increased,31–34 thereby contributing 
to the maintenance of hyperglyce-
mia. Cultured human proximal renal 
tubular cells from patients with type 2 
diabetes demonstrate increased SGLT-2 
messenger RNA and protein concen-
trations, with a fourfold increase in 
the uptake of the nonmetabolizable 
glucose analog α -methyl-D-glucopy-
ranoside (AMG).35 In patients with 
diabetes, it would be desirable for 
the kidney to excrete the excessive fil-
tered load of glucose in an attempt to 
restore normoglycemia. In contrast, 
the diabetic kidney responds to the 
ambient hyperglycemia by enhanc-
ing glucose reabsorption,31–34 thereby 
contributing to the pathogenesis of glu-
cose intolerance.

Ominous octet 
Lastly, neurotransmitter dysfunction 
in the CNS plays a key role in the 
etiology of type 2 diabetes.2,36 Under 
normal circumstances, insulin signals 
the brain to stop eating and decrease 
energy intake. Obese nondiabetic 
patients and obese patients with type 
2 diabetes are markedly resistant to 
insulin, and their β-cells respond to 
the insulin resistance with a compen-
satory increase in insulin secretion. 
Despite the hyperinsulinemia, which 
should suppress appetite, obese people 
continue to overeat, indicating that the 
appetite centers also must be resistant 
to insulin, and, indeed, this has been 
demonstrated with functional mag-
netic resonance imaging.36 There also 
is marked resistance to the appetite-
suppressant effect of leptin in obese 
people with type 2 diabetes. Low 
dopamine levels in the hypothalamus 
and increased catecholamine levels in 
the CNS also contribute to the dys-
regulation of appetite and may directly 
cause insulin resistance in liver and 
peripheral tissues (muscle).37,38

Summary: pathophysiological 
disturbances
Recognition that multiple patho-
physiological disturbances comprise 
the ominous octet has provided new 
insight into novel approaches for the 
treatment of patients with type 2 dia-
betes. In the following sections, we 
will review antidiabetic agents that 
have shown promise for the treatment 
of type 2 diabetes. Some of these are 
well along in phase 3 trials, whereas 
others are still in the preclinical phase 
of development. New rapid- and long-
acting insulin preparations will not 
be discussed, except where they have 
been used in combination with GLP-1 
receptor agonists.

GLP-1 Receptor Agonists
GLP-1 receptor agonists have many 
clinical benefits. They effectively 
reduce A1C, augment insulin secre-
tion and preserve β-cell function, 
inhibit glucagon secretion by the 
α-cell, reduce the elevated basal rate 
of HGP, promote weight loss through 
their appetite-suppressant effect, delay 
gastric emptying,26,39,40 and improve 
many cardiovascular risk factors, 
including dyslipidemia, hypertension, 
and endothelial dysfunction.41 Not 
surprisingly, there exists considerable 
interest in the development of new 
agents in this class. 

Lixisenatide (Sanofi) is a once-
daily prandial GLP-1 receptor 
agonist that was approved by the 
European Medicines Agency (EMA) 
in February 201342,43 and, like exena-
tide, has its primary effect in lowering 
the postprandial rise in plasma glu-
cose concentration.43 A 13-week 
randomized, double-blind, placebo-
controlled, dose-ranging study found 
that lixisenatide 20 µg administered 
once daily provided the best effi-
cacy-to-tolerability ratio, with no 
additional benefits with any of the 
twice-daily doses.44 Lixisenatide 20 
µg once daily significantly improved 
glycemic control with low rates of 
hypoglycemia and beneficial weight 
effects when administered as mono-
therapy,45 as add-on therapy to oral 
agents,44,46–48 and in combination with 
basal insulin with or without oral anti-
diabetic therapy.49,50 In a recent study, 
exenatide twice daily had a slightly 
better effect on glucose control than 
lixisenatide once daily within the 
established noninferiority margin of 
0.3%.51 Combination therapy with 
lixisenatide plus insulin glargine in a 

fixed-combination administered as a 
single daily injection in an easy-to-use 
pen is in phase 2 development. Sanofi 
withdrew its lixisenatide application 
in the United States, citing the possi-
bility that its ongoing cardiovascular 
study data could be shared publically, 
but it plans to resubmit the application 
when that trial is completed.

Liraglutide (Novo Nordisk), a 
once-daily GLP-1 receptor agonist, has 
been combined with insulin degludec, 
a long-acting basal insulin that is 
available in Europe, Japan, and many 
other countries. The combination, 
known as IDegLira, is administered 
once daily, reduces FPG and postpran-
dial plasma glucose (PPG) levels, and 
lowers A1C by 1.9% in patients with 
type 2 diabetes with a starting A1C of 
8.7%.52,53 The decrement in A1C with 
IDegLira was greater than that with 
liraglutide alone (1.3%) or that with 
degludec alone (1.4%). Eighty-one 
percent of patients with type 2 dia-
betes treated with IDegLira achieved 
an A1C < 7.0% with weight loss and 
a reduced rate of hypoglycemia com-
pared to those treated with insulin 
degludec. IDegLira currently is under 
review by the EMA. 

Albiglutide (GlaxoSmithKline) is 
a GLP-1 receptor agonist developed 
by fusing a human GLP-1 dimer to 
recombinant human albumin.54 
Because of its long half-life, albiglu-
tide is administered once weekly. In 
a 32-week trial in patients with type 
2 diabetes, albiglutide reduced A1C 
by 0.78% from a starting A1C of 
8.16% and decreased body weight by 
0.64 kg.55 These reductions were less 
than those observed with liraglutide, 
which decreased A1C by 0.99% and 
body weight by 2.19 kg. The drug’s 
A1C-lowering and weight-reducing 
efficacy do not appear to be as robust 
as liraglutide, possibly because of abig-
lutide’s inability to penetrate the CNS 
because of fusion with the large albu-
min molecule. 

Despite their efficacy and durabil-
ity in reducing A1C and promoting 
weight loss, new prescriptions for 
GLP-1 receptor agonists compro-
mise < 5% of the U.S. market. This 
low market penetrance is accounted 
for by two factors: injection barrier 
and cost. To circumvent the injec-
tion barrier, Intarcia has developed 
a small, matchstick-sized osmotic 
pump (known as the ITCA 650) that 
is inserted subcutaneously just beneath 
the skin and delivers a slow, constant 
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rate of exenatide for up to 1 year. In 
a 48-week study, ITCA 650 deliver-
ing exenatide in doses of 20, 40, 60, 
and 80 µg/day reduced A1C by 1.0, 
1.0, 1.5, and 1.4%, respectively, with 
weight loss of 6.0, 10.8, 7.7, and 
7.9%, respectively.56 

Dulaglutide (Eli Lilly) is a once-
weekly GLP-1 analog fused with 
a human Fc antibody fragment. In 
a 52-week study, dulaglutide was 
more effective than exenatide twice 
daily, sitagliptin, and metformin.57,58 
Semaglutide (Novo Nordisk) is a once-
weekly GLP-1 receptor agonist that 
is in phase 3 trials and preliminarily 
has been reported to have superior 
A1C-lowering efficacy compared to 
liraglutide at the 1.8 mg/day dose.59 

Long-Acting DPP-4 Inhibitors
Currently, five DPP-4 inhibitors are 
approved in the United States and/or 
Europe: sitagliptin, saxagliptin, alo-
gliptin, linagliptin, and vildagliptin. 
All but vildagliptin (administered 
twice daily) are administered once 
daily and cause 24-hour inhibition of 
the enzyme DPP-4, which degrades 
both GLP-1 and GIP. A once-weekly 
DPP-4 inhibitor, omarigliptin (MK-
3105; 25 mg), is in development by 
Merck Sharp & Dohme60 and, in a 
12-week study, lowered A1C by a 
placebo-adjusted 0.71%.61

Insulin Secretagogues: TAK-875
Free fatty acid receptor 1 (FFAR-1, 
also called G protein coupled receptor 
40 [GPR-40]) is a member of a super-
family of cell surface receptors whose 
expression is highest in pancreatic 
β-cells. Ligand binding (unsaturated 
medium- and long-chain fatty acids) 
of FFAR-1 activates a subunit of the 
Gq class of G proteins (Gαq), causing 
hydrolysis of the plasma membrane 
phospholipid, phosphatidylinositol 
bisphosphate, to generate diacylg-
lycerol and inositol trisphosphate. 
Activation of FFAR-1 by fatty acids 
or synthetic ligands stimulates insulin 
secretion, but only in the presence of 
elevated glucose concentrations and 
via a pathway distinct from other glu-
cose-dependent insulin secretagogues 
such as GLP-1 receptor agonists.62

I n  a  phase  2  randomized , 
double-blind, placebo- and active-
comparator–controlled, 12-week trial, 
TAK-875 (Takeda Pharmaceuticals) in 
doses ranging from 50 to 200 mg/day 
reduced A1C by 1.0–1.1% compared 
to 1.0% with glimepiride (4 mg once 

daily) and 0.1% with placebo.63 The inci-
dence of hypoglycemia was similar in the 
TAK-875 and placebo groups. TAK-875 
significantly increased the insulinogenic 
index (ΔCP0-30/ΔG0-30, in which 
CP = C-peptide and G = glucose) of 
β-cell function during the OGTT, 
whereas glimepiride had no effect on this 
index. Body weight increased slightly 
with TAK-875 (~ 0.3 kg) compared to 
glimepiride (~ 1.0 kg). Although dem-
onstrating clinical efficacy, trials with 
TAK-875 recently were stopped because 
of concerns about hepatotoxicity. 
However, other GPR-40 agonists are in 
preclinical development.64 Studies with 
some65–67 but not with other68,69 GPR-
119 agonists, which act directly on the 
β-cell and enteroendocrine K- and L-cells 
to increase insulin and incretin secretion, 
respectively, have shown promise. 

SGLT-2 and SGLT-1 Inhibitors
Recently, canagliflozin (Janssen), an 
SGLT-2 inhibitor with some, but clini-
cally insignificant, SGLT-1 inhibitory 
action, was approved by the U.S. Food 
and Drug Administration (FDA). In 
a 52-week trial, canagliflozin was 
shown to be more effective than 
glimepiride70 and sitagliptin.71

Dapagliflozin (AstraZeneca), a 
highly selective SGLT-2 inhibitor, is 
approved in Europe and, on 8 January 
2014, was also approved in the United 
States by the FDA. In people with type 
2 diabetes, dapagliflozin increases uri-
nary excretion of glucose by ~ 70–80 
g/day, similar to that observed with 
canaglif lozin.72 ,73 Dapaglif lozin 
reduces the TmG in people with type 
2 diabetes, but most importantly, 
it reduces the renal threshold at 
which glucose spills into the urine to 
~ 40 mg/dl.74 Like canagliflozin, dapa-
gliflozin is effective in lowering both 
FPG and PPG concentrations, result-
ing in an A1C reduction of ~ 0.7–0.8% 
with a starting A1C of ~ 8.0–8.2%.73,75 
Reduction in the mean day-long 
plasma glucose concentration resulted 
in improved tissue sensitivity to insulin 
by 25–30% and enhanced β-cell func-
tion by 90–100%,76 from correction 
of glucotoxicity. Like canagliflozin, 
dapagliflozin is equally effective in 
new-onset versus longstanding type 
2 diabetes patients77 and in severely 
insulin-resistant, as well as insulin-
deficient, individuals treated with 
insulin.78 Dapagliflozin can be added 
to the therapeutic regimen of patients 
with type 2 diabetes who are treated 
with metformin, pioglitazone, a DPP-4 

inhibitor, a sulfonylurea (SU), or any 
combination thereof.73,75 Dapagliflozin 
also can be added to insulin in patients 
with type 2 diabetes.79

Because sodium and glucose reab-
sorption are coupled in the proximal 
tubule, all SGLT-2 inhibitors, includ-
ing dapaglif lozin, reduce blood 
pressure by ~ 5–6/1–2 mmHg due to 
their mild natriuretic effect. The loss 
of glucose calories (70–80 g × 4 kcal/g 
= 280–320 kcal/day) in the urine is 
associated with a 2.5- to 3-kg weight 
loss after 12 months, and the weight 
loss persists for > 2 years.

The most common side effect 
observed with dapagliflozin and other 
SGLT-2 inhibitors is vulvovaginitis in 
female patients and balanitis primar-
ily in uncircumcised males.73,75 The 
incidence of urinary tract infection 
was slightly increased in dapagliflozin- 
versus placebo-treated patients with 
type 2 diabetes (4.3 vs. 3.7%). Volume 
depletion–related side effects (dizzi-
ness and hypotension) can occur 
and are more common in elderly 
patients and individuals treated with 
a diuretic. Hypoglycemia is uncom-
mon with SGLT-2 inhibitors unless 
they are combined with an SU or 
insulin. Because of reduced efficacy, 
dapagliflozin is not approved for use in 
patients with an estimated GFR < 60 
ml/min/1.73 m2. By comparison, the 
efficacy of canagliflozin is modestly 
reduced in patients with an estimated 
GFR of 45–60 ml/min/1.73 m2 and is 
not approved with an estimated GFR 
< 45 ml/min/173 m2.

Empag l i f loz in  (Boehr inger 
Ingelheim/Eli Lilly) will be reviewed 
by the FDA in the first quarter of 
2014, and, because of efficacy similar 
to canagliflozin and dapagliflozin and 
a paucity of side effects,80,81 the FDA 
has waived review by an Endocrine 
Advisory Committee. Other SGLT-2 
inhibitors in phase 2–3 trials include 
tofogliflozin (Chugai), ipragliflozin 
(Astellas), luseogliflozin (Taisho), and 
ertugliflozin (Pfizer/Merck).

All of the above inhibitors of renal 
glucose reabsorption are highly spe-
cific for SGLT-2. It is widely believed 
that SGLT-1 is responsible for the reab-
sorption of only ~ 10% of the filtered 
glucose load.82 Within the GI tract, 
SGLT-1 is the transporter responsible 
for glucose absorption, and subjects 
genetically deficient in SGLT-1 develop 
glucose-galactose malabsorption asso-
ciated with diarrhea. Furthermore, 
SGLT-1 is the transporter in the L-cell 
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that is responsible for GLP-1 release. 
For these reasons, pharmaceutical 
companies have been reluctant to 
develop a combined SGLT-2/SGLT-1 
inhibitor. However, recent studies in 
combined SGLT-1/SGLT-2 knockout 
mice suggest that SGLT-1 is respon-
sible for a much greater reabsorption 
of the filtered glucose load than previ-
ously appreciated.83

Studies in mice treated with the 
nonabsorbable SGLT-1 inhibitor 
LX 2761 (Lexicon) demonstrated 
reductions in FPG and PPG and a 
reduction in A1C of 0.7% with no GI 
side effects, no increase in glucosuria, 
and an increase in circulating levels of 
GLP-1 and peptide YY (PYY), hor-
mones that suppress the appetite.84 
With respect to the increase in GLP-1, 
reduced GI absorption of glucose leads 
to increased distal delivery of glucose 
and short-chain fatty acids (produced 
by bacterial metabolism of glucose in 
the GI tract), both of which enhance 
GLP-1 and PYY secretion by the 
L-cell.

In humans, the combined SGLT-1/
SGLT-2 inhibitor LX4211 (Lexicon) 
has been shown to increase urinary 
glucose excretion, delay intestinal 
glucose absorption, and increase cir-
culating GLP-1 levels.85,86 In a 28-day 
study in subjects with type 2 diabetes, 
LX 4211 produced modest glucosuria 
(less than typically seen with selective 
SGLT-2 inhibitors), yet decreased the 
FPG concentration by 52–68 mg/dl, 
suggesting a significant inhibitory 
effect on gut glucose absorption.87 In 
a phase 2, 12-week study involving 
299 patients with type 2 diabetes on 
metformin monotherapy, LX 4211 
(400 mg) reduced A1C by 0.92% from 
a baseline of 8.1%.88 These results, 
although preliminary, suggest that 
combined SGLT-1/SGLT-2 inhibitors 
may have advantages over selective 
SGLT-2 inhibitors.

NEW MET (Metformin-
Delayed Release)
Metformin is the number-one pre-
scribed oral antidiabetic agent in 
the United States and worldwide, 
yet its mechanism of action remains 
poorly understood.89 Bioavailability 
of metformin is ~ 40–60%, and the 
biguanide is mainly absorbed in the 
upper small intestine. In diabetic rats, 
metformin lowers blood glucose levels 
acutely when given orally or intrapor-
tally, but not intravenously.90 Plasma 
metformin levels correlate poorly 

with the drug’s glucose-lowering 
effect. Metformin is concentrated in 
the cells of the distal small intestine 
and has been shown to increase GLP-1 
and PYY.91 Collectively, these observa-
tions suggest that the glucose-lowering 
effect of metformin, at least in part, 
results from a pre-systemic effect on 
the enteroendocrine L-cells in the small 
intestine to release gut hormones.

Using a delayed-release formulation 
that escapes absorption in the upper 
small bowel, 20 healthy subjects and 
24 patients with type 2 diabetes were 
treated with NEW MET (Elcelyx) for 5 
days. NEW MET, 500 mg twice daily, 
was as effective in lowering plasma 
glucose concentrations as 2,000 mg 
of metformin immediate release and 
metformin extended release, despite 
a 45–68% reduction in plasma met-
formin exposure. All metformin 
preparations similarly increased plasma 
GLP-1 and PYY levels. In a recently 
completed 12-week phase 2 dose-
finding trial, NEW MET (600, 800, 
and 1,000 mg/day) was compared to 
extended-release metformin (1,000 and 
2,000 mg/day) in 240 patients.92 NEW 
MET, 1,000 mg/day, was 50% more 
effective in reducing A1C than metfor-
min extended release, 1,000 mg/day, 
despite plasma metformin levels that 
were 65% lower. These results demon-
strate that NEW MET, which targets 
the lower bowel, effectively lowers A1C 
while minimizing metformin expo-
sure. The lower plasma exposure may 
allow the use of NEW MET in patients 
with diabetes who have reduced renal 
function, and the small tablet size will 
facilitate double and triple combination 
antidiabetic preparations.

Insulin Sensitizers
The only insulin-sensitizing drugs 
available for the treatment of patients 
with type 2 diabetes are the thiazoli-
dinediones (TZDs), which improve 
both muscle and hepatic insulin sen-
sitivity.2 Although metformin often 
is classified as an insulin sensitizer, 
we have shown that, in the absence 
of weight loss, it does not increase 
insulin-mediated glucose disposal 
in muscle.93 Therefore, there is great 
interest in the development of novel 
insulin-sensitizing agents that are 
not associated with weight gain and 
fluid retention.

Mitochondrial target of TZDs 
Emerging evidence suggests that the 
insulin-sensitizing, glucose-lowering 

action of TZDs can be separated 
from their effect to serve as a ligand 
for peroxisome proliferator–activated 
receptor (PPAR)-γ.94 MSDC-0160 and 
MSDC-0602 (Metabolic Solutions 
Development Company) have been 
shown to improve insulin resistance in 
multiple tissues, suppress hepatic glu-
coneogenesis and lipogenesis, reduce 
plasma glucose and insulin levels, 
and increase plasma adiponectin con-
centration in wild-type and PPAR-γ 
knockout mice.

Ongoing studies indicate that 
MSCD-0602 targets a previously 
uncharacterized mitochondrial com-
plex (mitochondrial target of TZDs 
[mTOT]), which contains two well-
conserved mitochondrial proteins 
(Mpc1 and Mpc2) that appear to 
modulate pyruvate entry into the 
mitochondria and regulate pyruvate 
oxidation.95 In a 12-week phase 2b 
trial with 258 patients with type 2 dia-
betes, doses of 100 and 150 mg/day of 
MSDC-0160 were as effective as piogli-
tazone (45 mg/day) in reducing A1C and 
were associated with less fluid reten-
tion and weight gain.96 Developers of a 
second mTOT-modulating compound 
recently have completed a phase 2a 
trial in patients with type 2 diabetes 
with similar results.96 

Pyruvate dehydrogenase 
kinase inhibitors 
The pyruvate dehydrogenase com-
plex (PDC) catalyzes the irreversible 
oxidation of pyruvate, generating 
acetyl-CoA and carbon dioxide, and 
is a key enzyme controlling the rate 
of oxidative glycolysis. In its dephos-
phorylated form, PDC is active.97 
There are four pyruvate dehydroge-
nase kinase (PDHK) isoenzymes with 
tissue-specific distribution. Inhibition 
of PDHK-4 in muscle increases pyru-
vate oxidation in muscle and decreases 
the supply of gluconeogenesic precur-
sors (lactate and alanine) to the liver, 
whereas inhibition of PDHK-2 in 
the liver decreases gluconeogenesis 
and the excessive rate of HGP that is 
characteristic of type 2 diabetes. Two 
PDHK inhibitors, AZD 2545 (Roche) 
and leelamine, have proven effective in 
lowering blood glucose levels in dia-
betic rodent models,98 and JTT-251 
(Japan Tobacco and Akros Pharma) 
shows promise in preclinical trials as 
a PDHK inhibitor for the treatment of 
type 2 diabetes.
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Protein tyrosine phosphatase 
1B inhibitors
Insulin initiates its stimulatory action 
on glucose metabolism by causing 
phosphorylation of three tyrosine 
residues on the insulin receptor.2,99 
This sets into motion a series of 
phosphorylation-dephosphorylation 
reactions whereby insulin receptor 
substrate 1 (IRS-1) translocates to 
the cell membrane, where it under-
goes phosphorylation on contiguous 
tyrosine molecules.2 This results in 
activation of phosphoinositol-3-ki-
nase, Akt, and other insulin-signaling 
molecules, leading to glucose trans-
port into the cell and subsequent 
metabolism. Mutagenesis of any of 
the three tyrosine residues on the 
insulin receptor impairs insulin action 
and mutagenesis of all three tyrosine 
residues simultaneously renders the 
insulin receptor inactive.

Because insulin receptor tyrosine 
phosphorylation is reduced in people 
with type 2 diabetes,2,20 it makes sense 
to increase tyrosine phosphorylation 
with protein tyrosine phosphatase 
1B inhibitors.100,101 In mice, genetic 
ablation of protein tyrosine phospha-
tase 1B (PTP-1B) results in enhanced 
insulin sensitivity.102 ISI-113175 (ISIS 
Pharmaceuticals), an antisense oligo-
nucleotide PTP-1B inhibitor (100–200 
mg injected weekly), has completed a 
phase 2 trial in patients with type 2 
diabetes on stable, maximal doses of 
SU. After 13 weeks, the 200 mg/week 
cohort reported a 25 mg/dl decrease in 
average weekly fasting self-monitoring 
of blood glucose values (P = 0.026 vs. 
placebo) and a 25 μmol/l decrease in 
serum fructosamine (P = 0.009 vs. 
placebo). A significant 65% increase 
in adiponectin was noted with 
ISI-113175.103

Fibroblast growth factor-21
Fibroblast growth factor (FGF)-21 is 
a secreted protein that is produced in 
liver and adipose tissue and has been 
shown to enhance insulin sensitiv-
ity, reduce plasma glucose levels, and 
improve the lipid profile in preclinical 
models of diabetes and obesity. FGF-
21 links FGF receptors to the Ras/
mitogen-activated protein (MAP) 
kinase pathway and stimulates glu-
cose uptake into adipocytes.104 In a 
recent dose-finding study, an analog 
of FGF-21, LY 2405319 (Eli Lilly), was 
administered to 46 obese patients with 
type 2 diabetes for 28 days. FPG and 
insulin concentrations declined sig-

nificantly, total LDL cholesterol and 
triglycerides decreased by 10–20%, 
HDL cholesterol increased signifi-
cantly,105,106 and plasma adiponectin, 
an insulin-sensitizing adipocytokine, 
increased. Weight decreased by 1.5–
1.7 kg, although the decrease was 
not significant. Although the precise 
mechanisms via which FGF-21 exerts 
its beneficial effects on glucose and 
lipid metabolism in type 2 diabetes 
remain to be established, the drug 
appears to have a novel mechanism 
of action and may prove effective as a 
glucose- and lipid-lowering drug. 

11-β-Hydroxysteroid 
dehydrogenase-1 inhibitors
11-β-Hydroxysteroid dehydroge-
nase-1 (11-β-HSD-1) enhances the 
conversion of cortisone (inactive) to 
cortisol (active) in the liver and adi-
pose tissue without disturbing the 
pituitary (ACTH)-adrenal axis. In 
genetically obese hyperglycemic mice, 
11-β-HSD-1 inhibitors improve insu-
lin sensitivity, hyperglycemia, and 
the plasma lipid profile. In the past 
decade, many 11-β-HSD-1 inhibi-
tors have been designed, synthesized, 
and tested in clinical trials.107,108 The 
glucose-lowering effect of this class of 
antidiabetic agents has been modest. 
In a 28-day phase 2b trial with INCB 
13739 (Incyte), there was a trend for 
the FPG concentration to decline 
(–19.5 mg/dl), and insulin-mediated 
glucose disposal and suppression of 
HPG (euglycemic insulin clamp tech-
nique) demonstrated a tendency to 
increase.109 However, in another study, 
no improvement in insulin sensitivity 
was observed in diet-treated patients 
with type 2 diabetes treated with car-
benoxolone.110 In a phase 3 trial in 80 
patients with type 2 diabetes and met-
abolic syndrome, MK-0916 (Merck) 
reduced A1C modestly (P < 0.05) 
without significant reduction in 
fasting or 2-hour plasma glucose con-
centrations during OGTT.111 Two new 
11-β-HSD-1 inhibitors, RO151 and 
RO838 (Hoffman-LaRoche), showed 
a tendency for A1C to improve with-
out change in any lipid parameters.112 
Currently, Boehringer Ingelheim also 
has an 11-β-HSD-1 inhibitor in active 
clinical trials. 

Diacylglycerolacyl Transferase-1 
Inhibitors
There are two isoenzymes of diac-
ylglycerolacyl transferase (DGAT). 
DGAT-1 catalyzes the formation 

of triglycerides from diacylglycerol 
(DAG) and acyl-CoA, the terminal 
and committed step in triglyceride 
synthesis. By inhibiting DGAT-1 in 
the GI tract, postprandial hyper-
lipidemia can be reduced and has 
been shown to be associated with 
insulin sensitization, reduction in 
liver triglycerides, and weight loss 
in preclinical studies.113 In a 1-week, 
randomized, placebo-controlled study 
in 62 obese male subjects, AZD 7687 
(Roche) produced a consistent dose-
dependent reduction in postprandial 
plasma triglyceride excursion, indi-
cating inhibition of gut DGAT-1 
activity.114 However, marked GI side 
effects, mainly diarrhea, occurred 
at drug doses that inhibited triglyc-
eride excursions by ≥ 250%. Further 
concern about this approach is the 
observation that DGAT-1 inhibition 
increases muscle levels of DAG and 
ceramide, two fatty acid derivatives 
shown to cause insulin resistance.115 
Moreover, DGAT overexpression in 
skeletal muscle lowered levels of lipo-
toxic fatty acid derivatives, inhibited 
triglyceride synthesis, enhanced fatty 
acid oxidation, and improved insulin-
mediated muscle glucose disposal.115

Anti-Inflammatory Therapies
In type 2 diabetes, adipose tissue is in 
a state of chronic inflammation,116 and 
adipose tissue hypoxia plays a central 
role in this inflammatory process.117 
In addition to adipose tissue hypoxia, 
metabolites of FFA and glucose, 
including DAG, ceramide, and reac-
tive oxygen species (ROS), contribute 
to the chronic inflammation in obesity 
by directly activating signaling kinases 
(protein kinase C, c-Jun N-terminal 
kinase [JNK], and insulin receptor 
kinase) and stimulating cell membrane 
receptors (TLR4, CD36) involved in 
inflammation and by inducing endo-
plasmic reticulum stress.118,119 Thus, 
inhibition of these inflammatory path-
ways has been suggested as a strategy 
to improve insulin sensitivity, lower 
plasma glucose levels, and prevent or 
slow the atherosclerotic process in 
people with type 2 diabetes. Of the 
anti-inflammatory agents, high-dose 
salicylates have been the most exten-
sively studied. 

The IKKβ/NF-kB (inhibitor of 
NF-kB kinase subunit β/nuclear-factor 
kβ) pathway is a potent inflammatory 
pathway that is activated by FFA, 
lipotoxic metabolites, ROS, and endo-
plasmic reticulum stress. IKKβ causes 
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NF-kB activation by phosphorylating 
the inhibitor of kβα (Ikβα), leading 
to its dissociation from NF-kB in the 
cytosol. NF-kB is a transcription fac-
tor that then translocates into the 
nucleus where it activates genes con-
trolling the synthesis of tumor necrosis 
factor-α and other serine kinases that 
inhibit insulin signaling and cause 
insulin resistance.119–121 High-dose 
salicylates inhibit the activity of 
IKKβ122 and ameliorate muscle insulin 
resistance and reduce HGP in rodent 
models of diabetes.123,124

In a large National Institutes of 
Health (NIH)-sponsored, randomized 
trial (Targeting Inflammation Using 
Salsalate in Type 2 Diabetes) involv-
ing 286 patients with type 2 diabetes, 
salsalate (3.5–4 mg/day) lowered 
A1C by 0.33% (P < 0.01 vs. baseline 
and placebo).125 Although promising, 
the reduction in A1C was not suffi-
ciently great to warrant continuation 
of the study. It should be emphasized, 
however, that many inflammatory 
pathways are activated in diabetes 
and obesity, and inhibition of a sin-
gle pathway may not be sufficient to 
produce a clinically meaningful reduc-
tion (≥ 0.5%) in A1C. Thus, combined 
inhibition of the IKKβ/NF-kB beta 
pathway with simultaneous inhibition 
of the MAP kinase, JNK, TLR4, or 
other pathways119 may be required to 
produce a greater reduction in A1C. 

Glucagon Receptor Antagonists
It is well known that plasma glucagon 
levels are elevated in type 2 diabetes 
and that the liver is hypersensitive to 
glucagon.28,29 Moreover, reduction 
of plasma glucagon concentration 
with somatostatin, while maintaining 
basal plasma insulin levels, has been 
shown to normalize the elevated basal 
rate of HGP and FPG concentration 
in hyperglycemic patients with type 
2 diabetes.27 Inhibition of glucagon 
secretion with resultant reduction in 
HGP represents a major mechanism 
via which both DPP-4 inhibitors and 
GLP-1 receptor agonists improve gly-
cemic control in type 2 diabetes. This 
has led to the development of glucagon 
receptor antagonists, which, in dia-
betic animal models, have been proven 
to effectively lower the elevated basal 
rate of HGP and FPG concentration.126

A number of orally administered 
glucagon receptor antagonists have 
been synthesized. A major concern 
about this class of drugs is the resul-
tant pancreatic α-cell hyperplasia and 

chronically elevated plasma glucagon 
levels. However, glucagon receptor 
antagonists that lower blood glucose 
levels without severe α-cell hypertro-
phy and only a moderate increase in 
plasma glucagon concentration have 
been developed.127 In phase 2 studies, 
both MK-0893 and MK-3577 (Merck) 
have been shown to have robust A1C-
lowering efficacy,128 but studies with 
these agents have been discontinued 
because of a rise in LDL cholesterol. 
In a 24-week study, LY 2409021 (Eli 
Lilly) 20 mg/day reduced A1C by 
0.92%, but elevation in hepatic ami-
notransferases, although modest, may 
limit the drug’s clinical usefulness.129

Glucokinase Activators
Glucokinase is the enzyme that medi-
ates the phosphorylation of free glucose 
after entry into the cell. Because of 
its high Km, the enzyme can rapidly 
respond to an increase in plasma glu-
cose concentration. In the β-cell, a 
specific glucokinase is the rate-limiting 
step for glucose metabolism and thus 
for insulin secretion, whereas in the 
liver, a different glucokinase responds 
to an increase in ambient glucose levels 
by augmenting glycogen synthesis and 
inhibiting HGP. The clinical impor-
tance of glucokinase is highlighted 
by inactivating mutations, which are 
responsible for maturity-onset diabe-
tes of the young type 2. The unique 
features of glucokinase and its central 
role in the regulation of insulin secre-
tion and HGP have led to a search for 
activators of the enzyme in β-cells, 
hepatocytes, or both.130

More than 100 patents for glu-
cokinase activators have been filed, 
but results to date have been disap-
pointing. Initial encouraging results 
were observed with Roche and Merck 
glucokinase activators, but the effi-
cacy waned over time, leading to 
discontinuation of the clinical devel-
opment programs. A similar waning 
of efficacy has been observed with AZ 
D1656 (AstraZeneca) in a 6-month 
trial and with AMG 151 (Amgen; 
previously Bio Array-403). A novel, 
hepatic-specific activator, TTP 399 
(Trans Tech Pharm), which does not 
interfere with binding of glucokinase 
to the glucokinase regulatory protein, 
has shown promise in a 6-week phase 
2a study in people with type 2 diabe-
tes, reducing A1C by 0.92% versus 
baseline and 0.53% versus placebo.131 
However, the treatment period was 

short, and the results of longer-term 
studies are awaited.

Despite these largely negative 
results, it is anticipated that the devel-
opment of novel glucokinase activators 
will continue because of the pivotal 
role of the enzyme in the regulation 
of glucose homeostasis. Two recent 
studies132–134 in patients with type 2 
diabetes with hepato-specific gluco-
kinase activators (GKM-001 [Advinus 
Therapeutics] and PF-04991532 
[Pfizer]) have shown glucose-lowering 
efficacy, but the studies were of short 
duration (14 days) and contained a 
small number of subjects. 

Fructose-1,6-Bisphosphatase 
Inhibitors
The bidirectional enzyme fructose 
1,6-biphosphatase (FBPase) catalyzes 
the conversion of fructose-1, 6-bispho-
sphate to fructose-6-phosphate and 
back to fructose-1,6-bisphosphate and 
plays a central role in the regulation of 
glycolysis (forward reaction) and glu-
coneogenesis (reverse reaction). When 
Ser32 of the bifunctional protein is 
phosphorylated, the negative charge 
causes a conformational change of 
the enzyme to favor FBPase activity; 
otherwise, phosphofructokinase 2 
activity is favored.135 In patients with 
type 2 diabetes, the basal rate of HGP 
is increased because of an accelerated 
rate of gluconeogenesis.

In animal models of type 2 diabe-
tes, inhibition of FBPase effectively 
lowers HGP from a variety of gluco-
neogenic substrates without causing 
hypoglycemia.136,137 Preliminary 
results with MB07803 (Metabasis 
Therapeutics) in a 14-day study in 42 
patients with type 2 diabetes demon-
strated a modest reduction in FPG 
concentration.138 Safety concerns 
about hypoglycemia and lactic acido-
sis may limit the clinical usefulness of 
FBPase inhibitors or other drugs that 
block gluconeogenesis in hepatoctyes.

Acetyl-CoA Carboxylase Inhibitors
Acetyl-CoA carboxylase (ACC) cata-
lyzes the irreversible carboxylation 
of malonyl-CoA for the biosynthe-
sis of fatty acids. Circulating FFAs 
and increased levels of intracellular 
lipotoxic metabolites of fatty acids 
(FACoAs, DAG, and ceramides) cause 
insulin resistance in liver and skeletal 
muscle and inhibit insulin secretion.2 
Not surprisingly, the ACC inhibitor 
NDI-630 (Nimbus) has been shown 
to enhance insulin sensitivity, lower 
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plasma FFA and glucose levels, and 
correct dyslipidemia in animal models 
of obesity and type 2 diabetes.139

Other Oral Antidiabetic Therapies 
A variety of other oral antidiabetic 
therapies have shown some prom-
ise in improving glycemia in type 2 
diabetes, including bile acid seques-
trants,140 activators of the bile acid 
farnesoid X receptor,141 AMPK acti-
vators,142–144 modulators of the gut 
microbiota,145 activators of glycogen 
synthase,146 inhibitors of glycogen 
phosphorylase,147 and ranolazine.148 
Ranolazine currently is approved 
by the FDA as an antianginal drug 
that works by inhibiting the late 
sodium current in cardiac myocytes. 
How this is related to the decrease 
in A1C observed in patients with 
type 2 diabetes is unclear, although, 
at higher doses than achieved clini-
cally, ranolazine has been shown to 
inhibit fatty acid oxidation. In vitro 
studies have demonstrated that rano-
lazine inhibits glucagon secretion by 
the pancreatic α-cells by inhibiting 
sodium channels.149,150

In preclinical studies, activation of 
the protein deacetylase SIRT1 with 
SRT3025 has been shown to promote 
weight loss, inhibit hepatic gluconeo-
genesis and lipogenesis, and enhance 
insulin sensitivity.151 Whether similar 
results will be observed in humans 
remains to be seen. Most recently, 
obeticholic acid (OCA) has been 
shown to be effective in treating non-
alcoholic fatty liver disease (NAFLD) 
in an NIH-sponsored trial and to 
improve insulin sensitivity in people 
with type 2 diabetes and NAFLD. This 
has raised interest in the use of OCA 
to treat patients with type 2 diabetes.

Anti-Obesity Medications
The current diabetes epidemic is being 
driven by the obesity epidemic, which 
represents a state of tissue fat overload. 
Accumulation of lipotoxic metabolites 
in the β-cell inhibits insulin secretion, 
whereas increased levels of FACoA, 
DAG, and ceramides in the liver and 
muscle cause insulin resistance.2,119 
Recently, Qsymia (combination phen-
termine/topiramate XR) and Belviq 
(lorcaserin) have been approved by 
the FDA as treatments for weight 
loss in obese individuals. Lorcaserin 
is a selective 5-hydroxytryptamine 
2C (serotonin) agonist that decreases 
food intake through the proopiomel-
anocortin system. Phentermine is a 

sympathomimetic appetite-suppress-
ing drug, whereas topiramate is a 
γ -aminobutyric acid receptor mod-
ulator, although its mechanism of 
action in promoting weight loss is 
poorly understood.

In the Behavioral Modification 
and Lorcaserin for Obesity and 
Overweight Management in Diabetes 
Mellitus trial,152 lorcaserin reduced 
body weight by ~ 5% and mean A1C 
by ~ 1.0%, even though the use of 
diabetes medications was decreased. 
In the 2-year SEQUEL study,153 
phentermine/topiramate reduced 
body weight by ~ 10%, and, in the 
subset of obese patients with type 
2 diabetes, it decreased A1C more 
than placebo with fewer increases 
in diabetes medications. Progression 
to type 2 diabetes was significantly 
reduced (0.9 vs 3.7%, P < 0.001) in 
nondiabetic patients treated with 
phentermine/topiramate.153

At present, it is unclear whether 
either lorcaserin or combination 
phentermine/topiramate have antidia-
betic actions beyond their weight loss 
effect. Nonetheless, these weight loss 
medications are effective in improving 
glycemic control in obese patients with 
type 2 diabetes. 

Conclusion
Multiple pathophysiological distur-
bances comprise type 2 diabetes. It is 
imperative that agents continue to be 
developed as the epidemic of diabetes 
continues and is likely to worsen dur-
ing the next several decades. Promising 
agents have been, and continue to be, 
developed. Some are variations on ther-
apeutic classes already available (GLP-1 
receptor agonists, DPP-4 inhibitors, 
SGLT-2 inhibitors, metformin, TZDs/
mTOTs modulators, and bile acid 
sequestrants), some are anti-obesity 
drugs that may hold promise for type 
2 diabetes (phentermine/topiramate 
and lorcaserin), and others are unique 
classes that may or may not come to 
fruition for the treatment of diabetes 
in the future (PDHK inhibitors, PTP-B 
inhibitors, FGF-21 analogs, 11-β-
HSD-1 inhibitors, DGAT-1 inhibitors, 
glucagon receptor antagonists, gluco-
kinase activators, FBPase inhibitors, 
ACC inhibitors, anti-inflammatory 
medications, AMPK activators, and 
modulators of gut microbiota). Time 
will illuminate the potential for each 
drug candidate, although it is clear that 
the pipeline for diabetes pharmacother-
apies is robust.
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