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Gastric bypass surgery (GBP) for obesity, by constructing
an isolated �30-ml proximal gastric pouch connected to a
75-cm limb of proximal jejunum, bypassing >90% of the
stomach, the pylorus, and the duodenum, cures type 2
diabetes in >80% of cases. We review alterations in gas-
trointestinal peptide release after GBP that affect glucose
disposal. We focus on ghrelin and the incretins glucose-
dependent insulinotropic polypeptide, glucagon-like pep-
tide 1, and peptide YY as the most likely candidates for
increasing insulin sensitivity after these operations, even
before substantial weight loss has occurred. Although we
have limited our review to only four gastrointestinal pep-
tides, others may be involved, as are adipocyte-derived
molecules such as leptin and adiponectin, and substrate
receptor interactions in target tissues including the brain.
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T
he increasing prevalence of obesity worldwide is
accompanied by an explosion in the prevalence
of type 2 diabetes (1,2); �60% of all cases of
diabetes are attributable to obesity. In light of

this, it has been proposed that obesity has become to
diabetes what tobacco is to lung cancer (2).

Surgeons have for some time been able to contribute to
the understanding of mechanisms involved in diabetes by
studying human tissue (3). Today, surgery is the most
effective treatment for obesity and has been proven to
improve quality of life, glycemic control, triglyceride lev-
els, and blood pressure with long-term follow-up (4). The
surgical procedures in use today can be divided into three
different categories: purely restrictive, such as adjustable
gastric banding (AGB) (Fig. 1); combined restrictive/mal-
absorptive, or diversionary procedures, such as gastric
bypass (GBP) (Fig. 2); and mainly malabsorptive, exem-
plified by biliopancreatic diversion (BPD) (Fig. 3) with or
without “duodenal switch.” These procedures achieve
different long-term results with regard to resolving type 2
diabetes, with malabsorptive procedures being most effec-

tive and purely restrictive being least effective (4). Many
surgeons have observed that patients with type 2 diabetes
exhibit improved glycemic control very early after anti-
obesity surgery, even before any weight loss has occurred.
This seemed to be more pronounced in patients undergo-
ing diversionary rather than purely restrictive operations
(5,6), leading to the speculation that the effect is due to
alterations in the release of gastrointestinal (GI) peptides
that influence glycemic control.

The aim of this article is to explore the phenomenon of
improved glycemic control, focusing on GBP, the most
commonly performed surgical procedure with the richest
literature documenting postoperative resolution of type 2
diabetes. We describe the different anti-obesity proce-
dures, followed by the changes in postoperative GI peptide
release, concluding by discussing how these peptides may
influence the changes in food intake and glycemic control
seen after anti-obesity surgery.

EFFECT OF GASTRIC BYPASS ON GLUCOSE

HOMEOSTASIS

That GBP has a long-term positive effect on both the
resolution of type 2 diabetes and in preventing new cases
with type 2 diabetes is clear (4,6). In a longitudinal study of
obese subjects with impaired glucose tolerance followed
for 5 years, anti-obesity surgery lowered the rate of
progression to type 2 diabetes by �30-fold (7). Today, it is
also clear that GBP has an early and very profound
positive effect on glucose homeostasis. Several studies
have examined the effect of GBP on glucose homeostasis
3–4 weeks after GBP; mean BMI was not significantly
changed, but fasting plasma glucose and insulin were
significantly reduced. Insulin resistance improved after 4
weeks and continued to improve over the 6 months of
follow-up (8,9). Thus, it is now established that GBP signifi-
cantly improves type 2 diabetes over the short and long term.

DIFFERENT ANTI-OBESITY OPERATIONS

Purely restrictive surgery. Purely restrictive bariatric
operations cause weight loss by limiting the capacity of
the stomach to accommodate food and constricting the
flow of ingested nutrients. Today, two such procedures are
performed: vertical banded gastroplasty (VBG) and AGB.
VBG entails a partitioning staple line that extends upward
from a circular stapled hole in the stomach (to exclude the
easily dilatable fundus). A synthetic band is used to
reinforce the stoma (Fig. 1A), which has a diameter of �1
cm. The pouch commonly measures 30 ml. Although VBG
effectively limits the amount of food that can be consumed
at one sitting and causes 30–50% reduction of excess body
weight within the first 1–2 years, long-term results from
the U.S. are disappointing (10,11). European data are
generally more favorable (12). It is possible that differ-
ences in eating behavior between patients in the U.S. and
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Europe, as well as the severity of obesity, explain why
VBG works less well in U.S. patients. Our own unpub-
lished data in a subsequent series of 254 patients with
laparoscopic VBG show a reduction in BMI from 41.3 to
32.5 kg/m2 after 7 years. Some patients accommodate to
gastric restriction by eating frequent small meals and
calorie-dense foods, such as milkshakes (13), developing
what we termed the “soft calorie syndrome” (14). Snack-
ing seems more prevalent in the U.S., while traditional
family meals appear to be more common in Europe. VBG
has fallen out of favor in the U.S. (13), whereas laparo-

scopic AGB is the dominant purely restrictive bariatric
procedure, mainly because of its relative ease (Fig. 1B).
ABG involves placement of an inflatable silicone band
around the upper stomach to partition it into a small
�30-ml proximal pouch and a large distal remnant, con-
nected through a narrow adjustable constriction (15).
Weight loss after gastric banding is similar to that of VBG
(4). Similar to VBG, some patients develop the “soft calorie
syndrome” after AGB; however, this seems to be less
prevalent in Europe and Australia than in the U.S. (16).
Gastric restriction combined with maldigestion. Gas-
tric bypass divides the stomach into a small proximal
pouch measuring �30 ml and a separate large distal
defunctionalized remnant. The upper pouch is joined to
the jejunum through a narrow gastro-jejunal anastomosis
(Fig. 2). The proximal divided jejunum is reattached to the
jejunum 75–150 cm below the gastro-jejunal anastomosis,
creating a Roux-en-Y limb. Thus, storage capacity of the
stomach is reduced to �5% of its normal volume, and
ingested food bypasses �95% of the stomach, the entire
duodenum, and a small portion (15–20 cm) of the proximal
jejunum. Initially, the operation relies on gastric restric-
tion much like gastroplasty (6–18 months). Subsequently,
when the pouch and stoma have stretched, other mecha-
nisms take effect to maintain the loss, accounting for the
superior weight loss maintenance compared with purely
restrictive operations.

The appetitive mechanisms of the diversionary compo-
nent of GBP are achieved through the absence of a pyloric
“meter” or “brake,” allowing rapid transit via the gastroje-
junostomy, and maldigestion caused by the absence of
acid and pepsin and the grinding-mixing forces of the
stomach. Thus, undigested food rapidly shunted into the
small bowel can cause nimiety via mechanoreceptors and
possibly satiety via chemoreceptors (17) or neurohumoral
mechanisms. These changes in GI peptides after GBP will
be discussed in detail further on.
Malabsorptive procedures. Malabsorptive procedures
reconstruct the small intestine to reduce the area of
mucosa available for nutrient absorption. The first such
procedure was the jejunoileal bypass (Fig. 3A), which is
rarely performed today but is interesting owing to well-
described altered GI peptide release.

A second malabsorptive procedure is BPD, with or
without a pylorus-sparing duodenal switch (Fig. 3B). Mal-
absorption occurs as pancreatic and biliary secretions are

FIG. 1. A: Vertical banded gastroplasty. B: Adjustable gastric banding.

FIG. 2. Gastric bypass.

FIG. 3. A: Jejunoileal bypass end-to-side (40 cm to 10 cm). B: BPD with
pylorus sparing duodenal switch with 100-cm common channel.
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diverted to the distal small intestine �50 cm from the
ileocecal valve, thus diverting digestive juices from con-
tact with food. Thus, absorption is limited to the distal
ileum where the two are combined in a common channel.
This arrangement promotes selective malabsorption of fat
(18). Weight loss is effective with BPD, but compared to
GBP, it causes more complications, such as protein mal-
nutrition, diarrhea, and deficiencies of various vitamins
(19). It is interesting to note that BPD has a much higher
success rate in Italy than in the U.S., again suggesting that
perhaps the diets consumed in the different countries may
affect the success of different surgical procedures for obesity.

GI PEPTIDES

After food intake, plasma concentrations of several GI
peptides either fall or rise. Our discussion focuses on
ghrelin, glucose-dependent insulinotropic polypeptide
(GIP), glucagon-like peptide 1 (GLP-1), and peptide YY
(PYY).
Ghrelin. Ghrelin was discovered as the endogenous li-
gand for the orphan G protein–coupled growth hormone
secretagogue receptor (GHS-R) and was demonstrated to
specifically stimulate growth hormone release from rat
pituitary cells in vitro as well as in vivo (20,21). The growth
hormone secretagogue receptor appears in two distinct
forms: the ghrelin receptor (GRLN) (formerly known as
GHS-R 1a) has orexigenic and motility-stimulating proper-
ties, whereas GHS-R 1b is thought to be inactive or to have
opposite effects (22). In situ hybridization indicates that
ghrelin is produced and released from enteroendocrine
X/A-like cells in the gastric mucosa (23) and to circulate in
human blood at a considerable concentration (20). Ghre-
lin-containing neural cells are localized in the arcuate
nucleus of the hypothalamus, a well-known center for
appetite regulation, suggesting involvement of ghrelin in
the regulation of feeding behavior (24,25).

Peripheral administration of ghrelin causes weight gain
by reducing fat utilization and stimulating food intake in
rats (21). Serum ghrelin concentrations are increased by
fasting and reduced by refeeding in rats and humans (26).
They rise sharply before and fall within 1 h of a meal (27).
Several studies on rats and humans confirm that ghrelin
initiates food intake (28,29). Circulating ghrelin levels are
increased up to threefold in states of negative energy
balance, such as anorexia nervosa, starvation, and ca-
chexia, and also after weight loss in obesity (30) and are
conversely decreased in conditions such as obesity, hyper-
glycemia, and feeding (31,32), suggesting that ghrelin plays a
central role in short- and long-term energy homeostasis (33).

Additional data indicate that ghrelin also plays a role in
the regulation of GI motility and acid secretion. Thus
intravenous administration of ghrelin stimulates gastric
motility and acid secretion in rats, and the effects are
abolished by pretreatment with atropine or bilateral cer-
vical vagotomy (34,35). Several studies also show a signif-
icant acceleration of gastric emptying in rodents (36,37),
although the results are equivocal (38). Because gastric
emptying rates and hunger usually are correlated in hu-
mans (39), one might expect that ghrelin increases gastric
emptying in humans, but intravenous ghrelin did not show
such effect in normal human volunteers (29). In patients
suffering from gastroparesis, however, intravenous ghrelin
accelerated gastric emptying (40–42). We recently found
that intravenous ghrelin increased gastric emptying corre-
lated with sensations of hunger in normal-weight humans
(42a) (Fig. 4).

Ghrelin has been suggested to be a counterregulatory
hormone that blocks insulin secretion (32). As mentioned
earlier, ghrelin stimulates growth hormone (20), but also
cortisol (43) and adrenaline (44), three of the classic
counterregulatory hormones. Results are less convincing
for the fourth, glucagon. Ghrelin enhances glucagon secre-
tion in vitro, while results in vivo are equivocal (45). In the
liver, ghrelin blocks gluconeogenesis and glycogen synthe-
sis mediated by insulin, and, in adipocytes, ghrelin blocks
the release of the insulin-sensitizing peptide adiponectin
(46,47). In addition, exogenous ghrelin administration de-
creases circulating insulin concentrations in both rodents
and humans (48,49). Ghrelin is also produced by islet
�-cells and may affect �-cells through a paracrine action
(50).

Ghrelin levels are lower in obese subjects than in
normal-weight subjects. A 3,000-kcal meal suppressed
ghrelin less in obese subjects than did a 1,000-kcal meal in
lean subjects (51).

The effect of GBP on plasma concentrations of ghrelin is
controversial. Dietary weight loss increases plasma levels
of ghrelin (52), so one would expect plasma ghrelin to
increase after GBP, but results are inconsistent. Some
studies have demonstrated increased plasma levels and
some no change, but the majority have shown a decrease
(53). The reasons for these discrepancies are not clear.
Surgical procedures differ in the amount of conserved
fundus, with its higher density of ghrelin-producing cells
included in the upper stomach pouch. Furthermore, vagal
nerve fibers are cut during the procedure, interfering with
the release of ghrelin mediated by vagal stimulation (54).

Study design may also influence the results. For exam-
ple, in a recent publication, 15 lean (13 women) and 12
obese (9 women) subjects were compared with 6 women
who underwent either GBP or AGB with a follow-up of
6–36 months; no significant difference was found in
plasma ghrelin in the obese compared with the post-GBP
patients (55), although known sex differences in plasma
ghrelin concentrations may have confounded the results.
Glucose-dependent insulinotropic polypeptide. GIP is
synthesized and released by the K-cells of the duodenum
and proximal jejunum in response to glucose and fat
ingestion. Defects in GIP pathways are considered to
underlie type 2 diabetes, where the incretin effect of GIP is
attenuated secondary to decreased expression of GIP
receptors (56). GIP has not been studied extensively after
GBP surgery. One would expect that GIP levels decrease
after GBP, since the duodenum is no longer in continuity
and the jejunum is not protected by the pylorus. Indeed,
GBP was found to decrease GIP levels (57); however, in

FIG. 4. The effect of ghrelin and GLP-1 on gastric emptying in two sets
of normal-weight humans (42a,59). Data shown as mean � SEM.
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another study, GBP resulted in reduced plasma GIP con-
centrations in type 2 diabetes but not in nondiabetic obese
patients (8).
GLP-1. GLP-1 and PYY are produced and secreted from
endocrine L-cells in the mucosa of the ileum and colon.
Both peptides are released in equimolar amounts after a
meal (58). GLP-1 is a major contributor to the ileal brake
mechanism of the upper GI tract, thereby modulating
gastric emptying and acid secretion (59). It also exerts
dual actions in glucose homeostasis through its concur-
rent insulinotropic and glucagonostatic actions (60). Be-
cause GLP-1 slows gastric emptying of both liquids and
solids (Fig. 4) (59,61), the metabolic requirements for
insulin after food intake are reduced or at least delayed
(62). Accumulating evidence indicates that GLP-1 exerts
its effects on GI functions through the vagus nerve in both
animals and humans (63).

Postprandial GLP-1 release can have two different
mechanisms of action, affecting food intake and satiety.
Intracerebroventricular injection of GLP-1 in rats inhibited
food and water intake (64,65) and induced c-fos expres-
sion in the paraventricular nucleus of the hypothalamus
(64). Intracerebroventricular administration of the GLP-1
receptor antagonist exendin(9-39) amide also results in
increased food intake in satiated, but not in fasted, rats
(64). With continuous intracerebroventricular treatment,
exendin(9-39) amide rats increase not only their food
intake, but also body weight (66).

In humans, intravenous administration invariably in-
duces decreased food intake with ratings of reduced
hunger and increased fullness in normal-weight, diabetic, and
obese subjects (67–69). In some of these studies, gastric
emptying was inhibited. A second mechanism by which
GLP-1 can inhibit satiety is therefore by decreasing the rate
of gastric emptying and thus increasing gastric distention.
PYY. The truncated form of PYY, PYY (3-36), is released
from the GI tract after a meal and induces satiety (70). The
effect of PYY (3-36) has been suggested to have a longer
duration of action than other GI satiety peptides. Animal
studies show that PYY (3-36) exerts its effect as a Y2
receptor agonist, thereby suppressing neuropeptide Y–in-
duced hunger in the arcuate nucleus of the hypothalamus.
In analogy to GLP-1, postprandial plasma PYY concentra-
tions have recently been shown to be lower in obese than
lean subjects (71), which supports the proposal that PYY
(3-36) is a mediator of satiety. As pointed out above,
however, this property does not seem to be specific, but
rather a common feature of obesity (compare with GLP-1),
due to weak signaling of the gut inhibitory mechanisms on
food intake.

PYY (3-36) has also been shown to decrease food intake
in rodents (70); however, there is an ongoing debate, since
other researchers have been unable to reproduce these
results. In analogy with other GI peptides involved in
regulating food intake, PYY also inhibits fasting small
bowel motility (72) and gastric emptying (73). In rodents,
PYY (3-36) does not influence glucose metabolism in the
fasted state but increases glucose disposal during the
hyperinsulinemic clamp. This effect is most likely medi-
ated by changes in glucose uptake in muscle and adipose
tissue and not by effects on insulin release (74).

Obese subjects have attenuated release of GLP-1 and
PYY (55,75). The products from the L-cells have been
studied early on with regard to changes after anti-obesity
surgery. In patients undergoing jejunoileal bypass, plasma
concentrations of GLP-1 were attenuated before surgery

compared with normal-weight control subjects, but were
significantly elevated 9 months after surgery (75) and were
found to be very elevated 20 years after surgery (76). After
GBP, there have been conflicting data regarding GLP-1.
Again, some of this confusion is related to study protocol.
Some studies found fasting plasma GLP-1 to be unchanged
after surgery, whereas postprandial concentrations were
elevated in several studies (8,9,55). In analogy to GLP-1,
plasma PYY concentrations are elevated after GBP (9,55).

MECHANISMS OF ACTION OF GBP ON GLUCOSE

HOMEOSTASIS

Which mechanisms can explain the rapid reversal of type
2 diabetes after GBP? Patients do not eat much in the
immediate postoperative period and caloric restriction is
known to improve type 2 diabetes (77). When patients
start consuming regular food, they still remain in negative
energy balance, which in itself improves glucose tolerance.

Other more interesting mechanisms may be related to
the alterations in GI peptide release after GBP, working
singly or in conjunction. The relative importance of bypass
of the foregut versus a more rapid stimulation of the
hindgut remains to be determined.

Gastric bypass excludes the foregut and its ghrelin-
producing cells from digestive continuity, which may be
the cause of the decreased plasma ghrelin concentrations.
As mentioned earlier, ghrelin has several effects on glu-
cose metabolism, including suppression of insulin in hu-
mans (49). Thus, at least in pharmacological doses, ghrelin
disrupts insulin secretion and action. If, as postulated,
ghrelin acts as an anti-incretin in the fasted state, then
suppression of plasma ghrelin after GBP could enhance
glucose disposal and improve glucose metabolism in type
2 diabetes.

Recently, ghrelin has been found to vary with nutrient
status and also as a learned response. This suggested that
ghrelin might act as a cephalic phase hormone, further
emphasizing the role of ghrelin in glucose homeostasis
(78). As mentioned earlier, vagotomy disrupts ghrelin
release. In addition, ghrelin slows gut transit (79), result-
ing in more even uptake of nutrients from the gut, which
may decrease fluctuations in plasma glucose levels. Re-
cently, a 23–amino acid peptide encoded by the ghrelin
gene was discovered, named obestatin, which has been
suggested to have opposite effects to ghrelin in terms of
food intake and GI motility (80). It is not known whether
this peptide is influenced by GBP.

In a recent study, gastrojejunal bypass was performed in
Goto-Kakizaki rats, a nonobese model of type 2 diabetes.
This procedure leaves the stomach untouched; the duode-
num is separated from the stomach and the bowel conti-
nuity is interrupted 8 cm from the ligament of Treitz. The
distal of the two limbs was directly connected to the
stomach, and the proximal limb carrying the biliopancre-
atic juice was reconnected down the alimentary limb at a
distance of 12 cm from the gastrojejunal anastomosis—
similar proportions as in the BPD–duodenal switch in
people (81). The operated rats had significant improve-
ments in glucose tolerance and fasting glucose compared
with sham-operated controls, despite similar weight gains
at all time points to 9 months after surgery. The results of
surgery were compared with oral rosiglitazone and with
energy restriction and in both instances were found to be
superior. Thus, bypass of the foregut similar to GBP in an
animal model can ameliorate type 2 diabetes independent
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of weight loss. The mechanism behind this is unclear, but
alterations in gut hormone levels might be responsible
(81). Decreased GIP concentrations have been shown
after bypass of foregut in patients with type 2 diabetes (8).

GBP results in accelerated delivery of nutrients to the
hindgut, which results in decreased gastric emptying and
GI transit, dubbed the “ileal brake.” GLP-1 and PYY have
been suggested as mediators of the “ileal brake.” Both
GLP-1 and PYY release are augmented after GBP and have
been shown independently to decrease food intake in
humans (67,71). Hunger was decreased and satiety in-
creased 6 weeks after BPD with concomitant increases in
plasma GLP-1 and PYY (82). Thus, increased postprandial
plasma GLP-1 and PYY after GBP may decrease food
intake and lower plasma glucose, whereas GLP-1 in-
creases insulin and decreases glucagon secretion. GLP-1
also has trophic effects on the pancreas via anti-apoptotic
and proliferative effects on �-cells (83). These trophic
effects have recently been linked to nesidioblastosis (84).
Just as decreased ghrelin concentrations may decrease
intestinal transit, so may increased GLP-1 and PYY.

To summarize, GBP markedly ameliorates type 2 diabe-
tes. This review proposes that alterations in GI peptide
release may at least partly mediate this effect. Decreased
plasma concentrations of ghrelin, as a result of bypassing
the foregut, and increased concentrations of GLP-1, as a
result of a more rapid stimulation of the hindgut, are the
most prominent candidates for this effect. Ghrelin may
have anti-incretin effects, counteracting GLP-1. Together,
these actions may explain both the early and late effects of
GBP on type 2 diabetes. Although this review has limited
itself to a few GI peptides, several others are also altered
after GBP, as are adipokines such as leptin and adiponec-
tin. All these changes affect trafficking of free fatty acids
and glucose, which may also contribute to the pronounced
positive effects of GBP on type 2 diabetes.
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