Pumps and Sensors

-The Bionic Patient
MY OTHER PANCREAS

Is Battery Operated

Subcutaneous Continuous Insulin Infusion (CSII)

Computerized Basal/Bolus Insulin Delivery

Where We Stand

- 20-30% of pts with T1DM and 1-2% of insulin-treated patients with T2DM use an insulin pump
- 2016: ~500,000 pts using CSII in the U.S.
- 2017/2018: 40,000 670G pumps shipped
- From 2009-2016 CGM users have increased 35%
- 2050: Up to 1/3 of US residents may have T2DM; many will be insulin-requiring
- Clinicians must develop a comprehensive understanding of these devices

SVMC Diabetes & Endocrine Center

Technological Features of CSII

Insulin Delivery

- Small bolus increments: 0.05-0.10 units
- Extended boluses for delayed digestion or grazing
 Multiple insulin-to-carbohydrate ratios, sensitivity factors, BG targets
- Bolus calculators (based on BG level and carbohydrate quantity)

(not all options available on all pumps)

- Low basal rates: 0.025-0.05 units/h
- Multiple basal rates
- Temporary basal rates and suspension mode
- Automated delivery based on CGM data

Technological Features of CSII

Safety **Features**

- · Alarms for occlusion and low insulin reservoir
- Active insulin to prevent insulin stacking
- Keypad lock

(not all options available on all pumps)

 Waterproof or watertight Auto-suspends insulin delivery when a CGM value reaches or falls below a pre-set threshold.

Technological Features of CSII

Miscellaneous

- Electronic logbook software (insulin doses, BG levels, carbohydrates)
- Integrated food databases with customization
- Reminder alarms for BG checks, bolus doses · Wireless communication with remote glucose
- meter Integration with continuous glucose monitoring technology

(not all options available on all pumps)

SVMC Diabetes & Endocrine Center

Pumps DO NOT . . .

- Take over care of patient's diabetes
- Make diabetes perfect
- Lessen the work of diabetes (it's just different)

Patient Selection for CSII

- ~ Ideal Candidates ~
- ~ Patient Selection ~

Ideal CSII Candidate

- Pt with T1DM or intensively managed insulin-dependent T2DM
- Currently performing ≥4 insulin injections and ≥4 SMBG measurements daily
- Willing and intellectually able to undergo the rigors of insulin pump therapy initiation and maintenance
- Willing to maintain frequent contact with their health care team

_				
Apr	il	13.	20	118

SVMC Diabetes & Endocrine Center

4

CSII Candidates of Concern

- Unable/unwilling to perform MDI injections, frequent SMBG and to carb count
- Lack of motivation to achieve tighter glucose control
- Hx of serious psychological or psychiatric condition(s)
 (e.g., psychosis, severe anxiety, or depression)

CSII Candidates of Concern

- Substantial reservations about pump usage interfering with lifestyle
- Unrealistic expectations of pump therapy (e.g., belief that it eliminates the need to be responsible for diabetes management)

Patient Selection Criteria

- Self-motivated
- Acceptance of diabetes
- Ability to problem solve
- Financial resources

SVMC Diabetes & Endocrine Center

Finances

- More expensive than multiple daily injections
- Initial expense
 - Pump: ~\$7,000
 - Start-up: \$1,500 \$10,000
- Ongoing expense
 - Supplies: \$3,600/year
- Financial assistance???

Medicare Requirements On CSII <u>BEFORE</u> Enrollment

- Has documented SMBG ≥4 times per day during the month before enrollment
- Fasting C-peptide ≤110% lower limit of normal or ≤200% lower limit of normal if CrCl ≤50 ml/min with concurrent FPG ≤225 mg/dL; OR beta-cell autoantibody positive (+ICA or GAD antibodies)

Medicare Requirements Qualifications if CSII <u>AFTER</u> Enrollment

- Has completed a comprehensive DM ed program
- On MDI with self-adjustments for at least 6 months
- Documented SMBG ≥4x/d during the previous 2 mo
- Meets ≥1 of the following criteria:
 - HbA1c >7.0%
 - Hx recurrent hypoglycemia
 - Fluctuating BGs before meals
 - Dawn phenomenon

April	13,	2018
, , , , , , , , ,	,	

Programming the Pump

- ~ Basal Rates ~
- ~ Bolus Rates ~
- ~ Active Insulin/Insulin on Board ~

April 13, 2018

6

Initial Calculations for CSII

- Start with 1 basal rate, adjust according to glucose trends over 2-3 days
- Adjust to maintain stability in fasting state (between meals & sleep)
- Add additional basals according to diurnal variation (dawn phenomenon)
- Adjust based on low-fat meals with known carbohydrate content
- \bullet Acceptable 2-h post-prandial rise is ${\sim}60 mg/dL$ above pre-prandial BG
- Adjust carb ratio in 10%-20% increments based on post-prandial BG
- Sensitivity Factor is correct if BG is within 30 mg/dL of target range within 2 hours after correction
- Make adjustments in 10%-20% increments if 2-hr postcorrection BGs are consistently above or below target

Consensus Statement by AACE/ACE insulin pump management task force. Endocr Pract. 2014 May; 20(5):463-89.

Hyperglycemic, elevated A1C or pregnant – start at higher value of method 1 & 2

Hypoglycemia patients – start at lower value of method 1 & 2

SVMC Diabetes & Endocrine Center

Initial Calculations for CSII

- Active Insulin (IOB)
 - Generally set from 3-4 hours (shorter in 670G)
- Auto Mode of 670G
 - Carb ratio and IOB ONLY VALUES set by provider
 - Carb ratio calculation closer to 300/TDD
- IMPORTANT to assess the manual mode settings for patients using the 670G auto mode

Ideal CSM Candidate

- Anyone with T1D
- Anyone with T2D on intensive insulin management
- Everyone else with A1C >goal
- Medicare limits CGM to devices with dosing approval only (currently) and to people with DM who test 4 times per day and use intensive insulin management

CGMS DOES . . .

- Less BG variability more time in range
- Less apprehension at work, at school, while sleeping, or driving
- Give great data a majority of the time
- Glucose value every 5 minutes
- Eliminate SMBG (for some systems) most of the time

SVMC Diabetes & Endocrine Center

CGMS DOES NOT. . .

- Completely eliminate the need for SMBG (for some systems)
- 'Take over' all diabetes control (getting closer)
- Give 100% data all of the time

Sensor Glucose ≠ Blood Glucose

- ■Sensor measures glucose in the interstitial fluid
- ■BG meter measures glucose in the blood

Sensor Glucose ≠ Blood Glucose
82 80 80 EEEE EEEE EEEE EEEE EEEE EEEE E

					_
Apri	1	13.	7(1(Я

SVMC Diabetes & Endocrine Center

CGM Systems

- •Offer alarms for glucose highs and lows
- Ability to download data and track trends over time and share data
- Offers ability to easily observe how any given food, exercise or insulin dose affects control over the course of a few hours
- Allows immediate feedback pts able to modify behaviors to gain better control

CGM Systems

- Supplements A1C
- Identify post-prandial glucose excursions
- Identify undetected nocturnal hypo
- Visual patient teaching tool
- Stop insulin delivery when BG < set value (integrated systems only)
- Allow patient to improve dosing (based on arrows)

CGM Systems

- Directional arrows available
- •Key aid to control
- •Blood glucose levels in a state of flux
- •Info regarding direction of glucose
- Predictive alarms based on rate of change
- Allows for adjustments in insulin dosing

April	13.	20	18
	. –		

SVMC Diabetes & Endocrine Center

1	Glucose not rising or falling >1mg/dL/minute
\gtrsim	Glucose rising 1-2 mg/dL per minute**
	Glucose rising 1-2 or 2-3 mg/dL per minute*
777	Glucose rising 2-3 or >3 mg/dL per minute*
	Glucose rising 3 or more mg/dL per minute**
* Varies based	on system **Not available on all systems

$\stackrel{\bullet}{\simeq}$	Glucose falling 1-2 mg/dL per minute**
1	Glucose falling 1-2 or 2-3 mg/dL per minute*
W	Glucose falling 2-3 or >3 mg/dL per minute*
	Glucose falling 3 or more mg/dL per minute**
* Varies based o	on system **Not available on all systems

Dexcom G5 & G6 / Abbott Freestyle Libre Dosing Off CGM Values

- Use Caution:
 - First 24 hours
 - Last 24 hours
 - Higher-carb meals
 - Stressful situations
 - Lows and rebound highs

April 13, 2018

SVMC Diabetes & Endocrine Center

Pump & CGM Combo

- Medtronic and Tandem have combination pump/CGM systems
- The sensor is a separate site on the skin from the pump
 - The sensor's glucose information is visible on the pump screen
- Life-changing future pump technology relies heavily on CGM technology

670G Hybrid Insulin Pump

- Suspend before low stops insulin 30 minutes before set low limit and restarts when level recovers
- Auto Mode
 - Adjusts basal insulin based on BG to keep glucose at 120 mg/dL
 - Adjusts correction based on learned history

Costs

- $\bullet \, Systems$
 - \$360 to \$1,400 for the hardware
 - \$3000 when initially introduced
- Sensors
 - Costs vary from \$100-300 per month (\$3.60-10/day) for continuous use
- Does not include the cost of the test strips needed for calibration and BG confirmations (if needed)

SVMC Diabetes & Endocrine Center

Use of CGM

- Improvements in DM management
 - Decreased variability
 - Decreased hypoglycemia
 - Decreased A1C
- Improvements in lifestyle
- Reinforces education
- Increased understanding of selfmanagement choices

Alarm Fatigue

- Patient will say to you:
 "These alarms are going off ALL THE TIME!"
 "I hate this sensor!"
- Issues:
 - 1) Too many alarms turned on
 - 2) MOST likely due to ...
 Insulin/activity/food behaviors
 Actions, delivery, rates and/or ratios are what need to be changed

